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Plasmas somewhere between fluids and single particles. Here consider single particles.
Uniform E and B

E =0 - guiding centers

av . =
m—=qv B
dt a

Take B =BZ. The

mv, =qgBv,; mv,=-qgBv,; mv,=0

z

Harmonic oscillator at cyclotron frequency

B
W, = lal
m
i.e
V,, SV e_iwct+idxvy

+ denotes sign of g. Choose phase d so that

m . 1. i :
V,=—V, =x—v, =ty =y
gB W,
Integrate
.V/\ iw .t V/\ iw,.t
X-% =-i—e" y-y =t—e"
=1 ¢ Tw

Cc C

Define Larmor radius
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Va mv,

w, [dB

r =

Taking real parts (fn + complex conj)/2) gives
X=X =n Sin(wct); Y- Yo=2r5 COS(Wct)

i.e. acircular orbit around B. lons and electrons circulate in opposite directions. The sense is
such that the B field generated by the particle always tends to reduce the external B, i.e. plasmas
are diamagnetic. Electrons have smaller Larmor radii than ions.

Definition of guiding center
Defined as
I7gc =r- ﬁc

r is position vector of particle and R is radius of curvature, which is avector from the position of
the particle to the center of gyration. In the plane perpendicular to B vector write in terms of
momentum vector p:

mw;R =qv’ B

Now w? = ¢fB*/m?, so

- p B
and

_ __ p'B

Fe =T - &

Now consider a collision in which aforcef is applied to the particle in a direction perpendicular
to the vector B, and this forceisf >> the Lorentz force. Let the field be homogeneous. Let the
impact time be very short, << the Larmor frequency. At the collision the momentum p changes a
lot but the particle position vector r does not. The momentum p changes from pto p' = p + Dp,
where

t+Dt

Dp= gfdt
t
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Now the guiding center must move by an amount
Dp” B
gc qBZ

Generalizing to a continuous force

d

d_ _d. P
_rgc__r+ 2
dt dr gB
nowuse%?zq\'/ B+F

where F is anon magnetic force. Then

%:V+(If+q\'/'§)'_8
dt qB’
F' B . ) -
_,,\F B+dv B)§
gB
_y +IE'§
Y qBZ

(expand triple vector product and use V=V, +V,

i.e. if the force is continuous, the guiding center motion can be viewed as a continuous series of
small impacts.
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E1O0
E

—_— B
y ®
% el ectron
Y,

Will find motion is sum of usual circular Larmor orbit plus adrift of the 'guiding center'. Choose
E in the x-z plane so that Ey = 0. As before, z component of velocity is unrelated to the

transverse components and can be treated separately.
dv = .=
m—=qlE+V" B
=l )

Z component

dv E
dtz = q(Ez)’ Vz :q_rr,lzt+vzo

i.e. acceleration along the vector B. Transverse components give
- g e A

vV, = - E tw.v,; v, =0Fw.yv,

Differentiate

v, =-Wlv,

_ 0_ 0
v, =FW, EX Wchg - W, Ty Vo

i.e
d _ 5
_2Vx =- WV,
dt
Exg_
dt W §’

i.e. just like E = O case except replace vy by vy + Ex/B. Therefore solutionis
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— iwct
V,=V,e

E

v, =*iv,e"d - =
Y B
i.e. thereisadrift in the-y direction. Electrons and ions drift in the same direction.

More generally, can obtain an equation for the 'guiding center' drift vge. Omit dv/dt terms, as we
know thisjust gives the Larmor orbit and frequency. Then

(E+v B)=0
E'B=-(v B) B=B" (v B)
:VBZ-E(V-E)

(Use

a
a=B;b=v;c=B: )
B' (v B)=v(B-B)-B(B-V)

transverse component gives the electric field drift of the guiding center”

E'B .
o = ? , mdependent of g, m, We.

Thisis because on first half of orbit a particle gains energy from E field, so velocity and Larmor
radius increase. But on second half of orbit the particle loses energy and Larmor radius
decreases. The differencein Larmor radius causes the drift.

gravitation

Generalize by replacing electrostatic by ageneral force. Then

os]

X
B’

Vgc =

ol

e.g. for gravity

mg B
Vgc:_g 2
qg B
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Note this is charge dependent, but very small. Therefore under gravity the charges drift and
produce a net current

o8]

g,
BZ

j :é. ngv; = n(m+M)

Non Uniform B

Need to expand in asmall parameter; orbit theory

‘grad B' drift NBAB

AY _
gradient on
of B -—LU/
/_, X electron
—2 2 _a9 0
X B

Take straight field lines in y direction, but with a gradient in their density, . Anticipate result:
gradient in |B| causes the Larmor radius to be different, If gradient in y direction then smaller
radius at top than bottom, , which will give a drift opposite for e and i, perpendicular to both the
field and its gradient .

Average the Lorentz force over a gyration. Note {F,} =0 as equal time moving up and down.
To calculate average {F,} use undisturbed orbit. Expand the field vector around the point xo, yo
so that
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CE\ c,

e
Fy =-qv, BZ(Y) =-QV. COS(W t)gB + y‘ﬂ_y +..

+..

CE‘\ c/

- QV. cos(wct)gB0 + 1,_cogw,t)
3

@I%

Thisassumesr /L << 1, where L is scale of YB/fly. Then

with + standing for the sign of the charge.

Curvature drift

Assume lines of force have constant radius of curvature R.. Take |B| constant. This does not
satisfy Maxwell's equations, so we will always add the grad B drift to the answer we are about to
get. Let vﬁ be the average of the square of the (random) velocity along the vector B. then the
average centrifugal forceis

5 _
F, :ﬂ”-r”:m/”25
R, R
Therefore
v —E 'Ed, E—ME
"q B gB’R

Now compute the associated grad-B drift. Use cylindrical coordinates. N° B =0 in vacuum..
B hasonly aqg component, and NB only aradial component , so

g g) =11 - 1
(N B)Z—rﬂr(rB) 0, B p>
and
1 NB_ R
BhR B TR
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so that

B'BR_,1vVR'B_1m,R'B

_1
Vig = F= Vaf =t ——S— =V,
NB 2 L

BFQ2 2w

Adding the curvature term to this gives

Now for a Maxwellian plasma V|2| ==

degrees of freedom), so that

_ V2o o
VR+NB:1R:;/Cy:iL§v y
Wherey:M

R B

i.e. dependent on q but not m.

Grad - B drift, NB|| B

Vi = k,T (because the perpendicular component has 2

Now consider B field along z, with magnitude dependent on z. Consider symmetric case; /99 =
0. Then lines of force diverge and converge, and Byt 0. From N- B =0

gl(rBr)+E =0
rqr Iz

Suppose B /fizisgiven at r = 0, and is not strongly dependent on r, then

r ﬂBZ » - e‘ﬂBu
"8 = ‘ﬂdr 2 @‘ﬂrB

1 e‘ﬂBu
Br»-—l’sﬂr H By

Variation of |B| with r causes a grad-B drift of the guiding centers about the axis of symmetry.
However thereisno radial grad - B drift because 1B/{lq = 0.

The component of the Lorentz force are
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F=0(vB, - v.B,)=q(v,B)
K= c(vB+v )

Fz_q( ra qBr)_q(' VqBr)
The terms F = Q(Vqu)? F, parta= q(-vr BZ) give the Larmor gyration. The term

F, partb =q(v,B ) vanishes on axis, and off axis it causes a drift in the radial direction. This
makes the guiding centers follow the 'lines of force'. Thefinal term, F, = q(- vV, Br) iswritten as

__q g‘ﬂzb

Average over a gyration period. Consider a particle with guiding center on axis. The
V, = V., =t
g = Vo L

Define magnetic moment

1mv?
m= =
2 B

Then in genera the parallel force on a particle is given in terms of the element ds along the
vector B:

| s I
Note for a current loop area A current | then

v pv: _lev:i mv2

ew, -
= |A=—Lpr° = == =
2pIDL 2p w2 2w, 2B

Invariance of m

Consider parallel equation of motion

VR, -

dt s

B0y, Bl 08
dt dt s dt dt
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where dB/dt is the variation of B seen by the particle. (B itself is or can be constant). Now
conserve energy

d —m/"2+£m/f9:£ —m/”2+rrBQ:O

dt e2 2 2 dtez2 9
Then

dmp)- mB =p, dM_g

dt dt dt

Magnetic mirrors, loss cone

Finally we have the magnetic mirror. A particle moves from wesak to strong field. B increases,
SO v, must increase to conserve m Then v, must decrease to conserve energy. |If B is high
enough at some place along the trgjectory, then v, = 0, and the particle is reflected. A particle
with small v, /v, at the mid plane where B = Bg is a minimum can escape if the maximum field
Bm is not sufficiently large. Let B =Bg, v, = v, and v. = v,, a the mid plane. At the
turning point B=B', v, =0,and v, = Vv, . Conservem

1mv?,  1mv?
2 B 2B
Conserve energy
2 2 2 2

g is pitch angle of particle in weak field. Particles with smaller pitch g will mirror in regions of
higher B. If g istoo small B' > By, and the particle escapes. The smallest q of a confined
particle is given by the mirror ratio Ry:

Particles which escape are said to be in the loss cone, independent of g and m. Collisions can
scatter particlesinto loss cones. Electrons are lost easily because collision frequency is higher.
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y
R

B

Consider the particles at the low field point where B = Bg. Let there be a uniform distribution of
pitch anglesa. The probability of getting lost is

P=F/(2p) = éyin(a)da =1- coga,)

.1/2 .. 1/2

. & o) & 10

e Y
M

Planetary Loss Cones exist. Take account of atmosphere. e.g. define equatorial loss cone for
Earth as that pitch angle ag such that its mirror point is a 100 km from the surface. This is
arbitrary, but used because at 100 km the density is high enough for scattering of electrons to
occur. Therefore at 100 km and below a mirroring electron will probably get absorbed by the
atmosphere and lost from the radiation belt. The equatorial loss cone for a dipole line of force
crossing the equator at 6 Rg is about 30. All electrons within 30 equatorial pitch angle cone are
precipitated because they are mirroring below 100 km. Electrons outside of the loss cone mirror
at heights above 100 km are trapped radiation belt electrons.
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Bounce Period in adipole

Consider trapped particles in the Earth's dipole field. Period of north south motion of guiding
center is

ds along path, v|| along path vector B, integral over complete period. Note

vi =v?- Vi =V¥(1- sin’(a)) :sz- gosinz(ao)g

where conservation of the first invariant mhas been applied, v = v2 and subscript 0 means at the
equator.

We need an expression for ds. Work in spherical coordinates

Q
/r+dvﬂj
O/quI__- r?/ P

(r,q) is polar coordinate of point P. PM perpendicular to OQ.

sn(oqp) = 1) _  snlce) cy 5
PQ dg ds PQ

Let Q approach P, then angle OQP becomes the angle between the tangent and the radius vector,
denoted asf. Also sin(dg)/dg ® 1, ds/PQ® 1, dq/ds® dq/ds and

| o\ dg
sin(OQP)® sin(f)=r -

Similarly
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_MQ_0Q- OM
cos OQP) = =
{00P) = 55 ==
_ 1 +dr - rcos(dq) ds
ds PQ

_®&(1- cogda)) dr0ds
eE ds dsgPQ

i.e
dro dr
f)= —_ =
cos(f ) + s
Then
dq
tan(f ) =r—
an( ) rdr
and since
sec’(f ) =1+tan*(f); cosec®(f ) =1+ cot’(f)
then

?SQZ:1+|*2 qu
dro dr o
1 sy’ ! r o
r’€dq 2 r’edq @

.2 .2
ie ?lsg =r 2 + ?19
dg 9 dg @
For adipolefield r = r,cos’(l ), wherel =p/2-q, and finally
ds=r, cos(l )1+ 3sin’(l ))mdl

(1+3sir?(1 )"

B
Alsof ipole— = h
so for adipole o= ) , SO that
I e . 9 12

=8 rocog| )(1+3sin’(1 ) g =4,
o e L fesse())Uu v

vel-sin (a 0) COSG(l) u

) ¢

p3.14

AJW August 16, 1997



Plasma Physics Single Particles AJW August 16, 1997

| 1 isthe mirror point of the particle in the northern hemisphere. Here v =0and | m, isgiven by
the solution of

1/2

cos’(l ) - sin’(a, )(1+3sin’(1 )] =0

Now |1 isdimensionless, and solved numericaly to be

l, »1.3- 0.56sin(a,)

Note 4ro/v depends on the particle energy.

Now particles are precipitated (lost) if the distance of closest approach

h“ <£
1A L

i.e. particles are trapped if the distance of closest approach is larger than Ryin. Now the field
line equation is r = r,cos’(l ), so that for particles mirroring at the plane surface we have | min
given by

Il

cos’(l ) =

For Earth, ro =L Rg (L is aparameter introduced by Mcllwain). Figure shows bounce period as
a function of electron energy for the marginally trapped electrons, for L = 1 to 8. For Auroral
lines of force (L = 6), and typical electron energies of 10 keV to 50 keV, the bounce period is a
few seconds.

Drift period in a dipole field

To calculate the guiding center drift period in a dipole field, remember that there are two
components, the gradient drift and the curvature drift. They can be combined together as

R~ Ba&? 0 R ~Ba? 0
vorvg MR B L 1 RBR .0
q g wR BR €2 2
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where w¢ is the cyclotron frequency, and Rc is the radius of curvature. Thisdrift is perpendicular

to vector B and vector r, that is around the word (equivalent to along the equator).

expression for the radius of curvature of alinein polar coordinatesis

= g
8 dqﬂ;a

r= 7
r2 +2@9 - 2ﬂ
dg@ dqg?

For the dipolefield

r=rycos’(l ); 1 =90-q

s0 that the radius of curvature vector is

cog| )(1+ 3sin(| ))3
J1+sn’(l))

The cyclotron frequency for the dipoleis

I’_O

1

(L+3sin?(1 ))2
cos’(l )

W, =W,

where wg isthe value at the equator. T hen the drift velocity at alatitude!| iswritten as

S

&NV

1+3sin?(l)

_37 (1+sin?(1)) cos'5(
cos’ (1)

|
2 wyp,(1+3sin’(1))

)% arife)

D

(13 (DI>\SD> D~

Note we have used

v,=vcosa), v, =vsin(a) (a isthe pitch angle)

v +%v§ =V’ cos’(a)+vZsin®*(@a)- %vzsinz(a)

1. A & 1B . o]
= V2§[- Esmz(a )%: Vzgl- —ZE smz(ao)g
& ) ! o}
v? 1+ 3sin?(1 ))2
“2¢ o)

p3.16

The



Plasma Physics Single Particles AJW August 16, 1997

Now the angular drift (around the earth) which occurs in one bounce period is

DF =0—7—— (ds along vector B)

rcos(l v,

(because bounce period is Tb:(‘pIs/v", so distance covered in a bounce period =

T, = (‘)/Dds/v|| , and angular distance is as given. The angular drift, averaged over a bounce, is
then

W = DF
\Wp/ 2pTB

Using expressions derived before, we can write this as

3E |

2
v_ v 1,
I

W~} = =
Vol 2,\/Or()z Il qBORéL2

N

with kinetic energy E = mv2/2, and

'g cos'(l J1+sir?(1)) 5. e )(1+33in2(l ))“23OII
0 % oy (1+3sin?(l ))1/25@ " eos’(l) g
& sna) cos(l) ¢

Numerically it is found that 1,(a,)/1,(a,) »0.35+0.15sin(a ), i.e. varying from 0.35 for ag =
00 particlesto 0.5 for ag = 900 particles. Then the bounce averaged drift period

{To) = 7— »50/(LE)

A\
Wop/

with Tp in minutesand E in MeV. Typical values (50 keV, L = 6) isabout an hour.

The Ring Current around the earth

The drifting bounced orbits just discussed are represented as below in a Mercator
projection. Magnetic storms are accompanied by a decrease in the horizontal field intensity at
the earth. A westward current around the earth would do this. This is expected from trapped
particles. Several MA are carried.
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Northern reflection

Equator

Southern reflection

We know the drift velocity
mR "~ Bai 0 1 RC B &2 26
Vo +Vigg = ——>— ¢— +V, += :
RV T PR &2 TVI5  wR BR &2 5

from which we derived the averaged angular frequency in the equatorial direction

3v? 3E
AR r——
2Wofy OBy

Wy »

i.e. the current density

3an

0

J =ngvy »Nqrowy » -

with n the number density and E the energy of the particles. Then thetotal current is given by

Idi =Jdv

where Eyqt isthe total energy associated with the particles. Then the change in field at the center
of thisloopis

DE rQ) _ 3% Etot
2a 4pB, r
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Thetotal perturbation must account for another contribution, namely the diamagnetic current due
to the cyclotron motion. This is calculated by noticing that the diamagnetic contribution is
equivalent to a ring of dipoles of radius r and total magnetic moment m Because r >> r, the
cyclotron radius, we can estimate the field at the center of the dipole ring as

_ nbM . 2 1/2
(from previous notes, B(r,l )_ 4pr? (1+3sm (l) )

)

Ediamagnetic =- rT‘[)3 m= rTbEth z
4pr 4pBr,
and
- —
— B B __ i'z

28 B B
Note the individual dipoles are aligned with the magnetic field direction
Thetotal perturbed field isthen

DB » - Sm)Etoé Z+ m’Eth Z» - m’E‘Ots 7= 2E, 5
4pByro 4pByr, 2081, M
where we have used
=DM
4pr

Non Uniform E (finite Larmor radius)

Time varying E (polarization drift)

Time Varying B (magnetic moment)
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Adiabatic Invariants

Appendix - Some Geometry

If C is a space curve defined by the function 7(u) , then di /du is a vector in the direction of the
tangent to C. If the scalar u isthe arc length s measured from some field point C, then dr /ds is
a unit tangent vector to C, and is called T. The rate at which T changes with respect to sisa
measure of the curvature of C and is given by dT /ds. The direction of dT/ds at any point on C
is normal to the curve at that point. If N isaunit vector in this normal direction, it is called the
unit normal. Then dT /ds=kN, where k is called the curvature, and r = 1/k is called the radius
of curvature.

The position vector at any point is

F=x(S)i +y(9)] +z(s)k

Therefore

dT _d’x~ d?y- d°z-
=i +-3]+—k
ds ds ds
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1
2

dT 1 Relxd al?yd” aal2z6'0
But — =kN; k = == =¢c—=+ +t¢c—=+ + s+
S ‘ K &io &ds's  dS b 4

Spherieal Coordinates (r, 4. 4).
Troneformatiog efuaticns:

r=rasindcosd, p=riinfsing £=rcosd
whete 20, 0S8 E= 054 <2
Seale factors: k=1, ks=7, M= rsing
Element of are length:

det = drf + Fdi® + rSaint s det

Jacobien: ;ﬂ{';:—;: = rizing
Element of volume; dV = raind drdeds

; : 143 al7 1 af . a8l 1 #T
Loplieigh: il = Fa—r(”—)mea'e( # 5 :'+ Faind 39
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